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1. In t roduc t ion  

The patchworking construction, based on the Viro "gluing" method [22, 23, 24, 

25, 26, 27], which was invented in 1979-80 for the construction of real alge- 

braic non-singular hypersurfaces with prescribed topology, and which provided 

a major breakthrough in Hilbert's 16th problem [9], was later modified for the 

construction of algebraic curves with many prescribed singularities in a plane 

[15, 17] or other algebraic surfaces [12, 19], and, more generally, hypersurfaces 

with prescribed singularities in smooth algebraic varieties [18], construction of 

polynomials with prescribed critical points [16, 17], vector fields with many limit 

cycles and prescribed singularities [10], and some other problems, for example, 

enumeration of singular curves [14, 20]. We should also like to mention that the 

patchworking construction appears to be useful in the symplectic setting as well 

(cf. [4, 11]). 

In [21] we proved a general patchworking theorem for the construction of 

curves with prescribed singularities in a given linear system on an irreducible 

algebraic surface, which covers and strengthens almost all previously known pro- 

cedures. Namely, one includes the given algebraic surface into a one-dimensional 

flat family X --+ (C, 0) which degenerates into a reduced, reducible surface Xo, 

then chooses a singular (reducible) curve Co, belonging to the limit linear sys- 

tern in X0, and, finally, deforms Co into a curve Ct in a general fiber Xt, keeping 

the prescribed singularities of the initial curve Co. 

In the present paper we elaborate in detail two particular versions of the 

general patchworking procedure. 

The version, considered in section 2, deals with the case of a curve Co C Eo 

having non-transverse intersections with the singular locus Sing(Xo) of Xo. We 

point out that in preceding patchworking procedures, the components of Co were 

required to be non-singular along Sing(X0) and to intersect it transversally (see 

[17, 18]). The reason was the absence of tools to control the behavior of Co in 

the non-transverse case. In [1, 2, 14] one can find a technically tricky statement 

on the deformation of a point, where two components of Co are non-singular 

and tangent to a non-singular line of Sing(X0), and the idea is based on the 

fact that the singularity of Co is planar (just Ak), and one can thoroughly 

study the versal deformation of such a singularity. The statement itself was 

used in the construction of nodal curves of surfaces of general type [2, 3], and 

later appeared in the tropical approach to enumerative geometry [20]. Here 

we suggest a completely different idea which allows us to treat a large class of 

singularities, not necessarily planar. Namely, we blow up the three-fold X at 
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the singular point so that  X0 obtains exceptional divisors as new components, 

then we add to Co the appropriate new components situated in the exceptional 

divisors (we call them admiss ib le  p a t c h w o r k i n g  pa t t e rn s ) ,  and thus reduce 

the problem to the case of a non-singular transverse intersection. 

Another version of the patchworking construction (see section 3) describes 

the deformations of non-reduced curves in smooth algebraic surfaces. To obtain 

controllable deformations of a multiple component of a given curve we take the 

trivial family of surfaces and blow it up along that  multiple component. The 

central surface of the new family contains a geometrically ruled surface as a 

component, in which we insert a suitable patchworking pattern. The class of 

deformations, which can be produced in this way, is basically parametrized by 

curves in some linear system on the ruled component. 

At last, in section 4, we demonstrate an application of our patchworking 

procedures, which results in a new sufficient numerical existence condition for 

irreducible curves with arbitrary prescribed singularities in given linear systems 

on smooth algebraic surfaces. Asymptotically, the new condition significantly 

improves the previously known general conditions [12, 19], and gets rid of non- 

numerical conditions, which have been rather hard to verify. 

ACKNOWLEDGEMENT: The authors are very grateful to Joseph Bernstein and 

Oleg Viro for helpful discussions. 

2. D e f o r m a t i o n  of  curves  w i t h  n o n - t r a n s v e r s a l  b o u n d a r y  c o n d i t i o n s  

In this section we extend the geometric patchworking procedure to the case of 

a non-transversal intersection of components of Co. We use the notation of 

Section 2.2 [21]. 

Consider a pattern consisting of: 

�9 a one parameter flat family of projective surfaces u: X -+ T over a smooth 

base T, 

�9 a family of invertible sheaves s on Xt = u - l ( t ) ,  i.e. an invertible sheaf s 

on X (up to a twist by ~*J" where ~ is a line bundle on T), and 

�9 a section ~0 C H ~ (Xo, s whose set of zeroes is denoted by Co k = U =l 
In [21] we developed a patchworking procedure which, under appropriate 

assumptions, provided us with a flat deformation Ct of Co, preserving the 

singularities. Namely, we assumed that: 

X1. Xt is reduced and irreducible for any t # 0, where 0 E T is a distinguished 

point. 
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k E i X2. X 0 ---- Ui=I is a union of reduced and irreducible surfaces such that 

dim(E i M EJ M E k) = 0, for any three distinct indices i , j ,  k. 

S1. Co has only isolated singular points and all these points are smooth points 

of X. I fp  E Sing(Xo) M Sing(C0) then p E E i M E j for some i , j .  

$2. C~ are reduced. 

$3. Co M E i M EJ is reduced for any i ~ j.  

$4. Co M E i M EJ M E k = ~, for any three distinct indices i , j , k .  

$5. For any p E Co M E i M EJ, there exists an open analytic neighborhood 

p E U C X such that Xo M U C U is a quasi-normal  crossing divi- 

sor; i.e. either it is a normal crossing divisor or the pair U -~ U~(0) C T 

is isomorphic to an open analytic neighborhood of 0 of the pair 

Spec C[x, y, z, t]/ (xy - t t) ~ Spec C[t] for some positive integer I. 

Notation 2.1: (1) Let n(i) be the number of the singular points of C~. We 

denote these singular points by p~,.. i �9 ,Pn(i) and their singularity types by 5~ = 

S(p}), j = 1, . . .  ,n(i). The types Sj can coincide for different j.  

(2) Let Zp} C Oxo,p} be the equisingular/equianalytic ideal of the singular 

i We denote by Z es/ea the equisingular/equianalytic ideal sheaf of the point pj. 

zero-dimensional scheme concentrated at Ui,j p} c X0, which is defined locally 

at p~ by the ideal Zp}. 

Under these assumptions and notation we proved 

THEOREM 2.2 (Weak Patchworking Theorem): Assume that 

(1) H I ( X o , I  es/ea | l:.o) = O. 

Then there exists some open neighborhood U~ = U~(O) C T and a family of 
fs i l l<i<k curves Ct c ]s t E U~, having ~ i  n(i) singular points of types 1 jIl~_j~,~(i), 

respectively, as their only singularities. 

Some generalization (Theorem 2.15 [21]) of the last theorem was proven as 

well. 

It turns out that in many cases the condition $3 is not satisfied; see, for 

example, [2]. However, one can still prove a version of the patchworking theorem, 

which is the goal of the current section. It is clear that even in the case when 

$3 is false, we can carry out the same "gluing" procedure as before with the 

only difference being that the points of intersection of the components of Co 

give rise to some new singularities. So the problem is to control the types and 

the number of "new" singular points which will appear. 
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The only known approach to this type of problem is a straightforward com- 

putation. This approach was successfully applied in the nodal case (cf. [1]). 

However, it seems to be impossible to extend this type of computation to the 

case of more complicated singularities. 

Our approach is different. We suggest reducing the problem, using geometric 

patchworking, to the problem of describing singular curves in toric surfaces. To 

do this, one has to blow up the family X along an appropriate non-reduced 

subscheme, concentrated at the "bad" intersection points, in such a way that 

the proper transforms C~ and E i N (EJ UE) will intersect transversally (the same 

when switching i and 3). 

X 

AJ 

Figure 1. Blow up of a boundary singularity. 

Let us explain our idea in more detail for the case of semiquasihomogeneous 

singularities of C~ and Co 3 at p E C~ N Co 3 . Denote a local parameter on T by t. 

We know that in some neighbourhood of p, X is given by xy = t k. Let z be a 

third local coordinate. Assume that the Newton diagrams of C~ and C j at p are 

A i and AJ as in Figure 1. Denote n = lcm(a, b, c), and consider the base change 

PC = X XT S where a: S ~ T is a totally ramified (at 0 �9 T) n(1/a + 1/b)- 

covering of T. Denote the local parameter on S by s (we can assume that 

s nO/a+l/b) = a*(t)). Now we can consider the zero-dimensional subscheme Z 

concentrated at i~ E )C which is defined by the ideal ~ with ~ C 0 2,~ generated 

by 

(2) { x j z i S n ( 1 - j / b - i / c )  l'i/c+j/b<ljO<i,jEZ- k.flL~l I . f~,J~icn(1--j /a--i /c)~ ~ JO~_i,jEZ " 

Consider the new flat projective family of surfaces Y = B1z(X) ~ S. 
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Remark 2.3: The generic fiber of the new family Y is isomorphic to the generic 

fiber of X and Yo = Bl(Xo) U E. 

Notation 2.4: We introduce the following notation for the projections. 

�9 ~ y ~ :  Y --+ X, 

�9 ~ r2x :~ -+X ,  
�9 l r y x  = l r ~ x  o 7ry.~,  

�9 ? r : Y - ~ S .  

Finally, we consider the new family of sheaves $ = 7@x(s ) | 7ry2Z and a new 

section 

s = rr~-x (,~o) U (~E �9 H~ 

where ~E = ~1~ E s (E) is any (admissible) section, cf. Definition 2.7, defining 

a curve with isolated singular points as its only singularities. The latter curve 

{~E = 0} = C~ C E we call an  admiss ib le  p a t c h w o r k i n g  p a t t e r n .  

CLAIM 2 .5 :  

�9 The exceptional divisor E is the toric surface associated with the triangle 

{(0, b), (0, -a ) ,  (c, 0)) c Z 2 | 
�9 the intersection__ 7r,~l(ca) M (E i M E) is transversal; 

--1 i E j  �9 7 ryx (C~)nE inEn =O; 
-1  i E i  �9 in the neighborhood of any p E rryx(C~) Cl M E C X the divisor 

E ~ U E C X is a quasi-normal crossing divisor. 

Proof: The proof of the claim is a straightforward computation and we omit 

it here. I 

COROLLARY 2.6: (1) The patchworking pattern (Y,s satisfies conditions 

X1, X2, S1, $2, $3, $4, $5. 

(2) I f  condition (1) of Theorem 2.2 is satisfied for the new data Y, s ~ then 

for a generic t C T there exists a curve Ct (defined by a section ~t E H~ ( Xt , s ) ) 
af s i l  l <i<k having t jJl~j~_n(i) U Sing(~E) as its only singularities. 

Now we would like to present a generalization of Theorem 2.2 and of the last 

corollary. To do this we need the following 

Definition 2.7: (1) In the above notations, let p E 2 i M NJ be a common point 

of the curves C~ and C~, which is a semiquasihomogeneous singular point for 

both the curves. We define the sheaves j i ~  on 2 ~ and JJP on NJ to be the ideal 

sheaves of the zero-dimensional schemes concentrated at p with stalks at p given 
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by (fl~P)p = Ideal(A i) and (JJP)p = Ideal(AJ), where A i, AJ are the (local) 

Newton diagrams of the singular point p of C~, C j ,  respectively (see Figure 

1), and Ideal(.) is defined by vanishing of the coefficients under the Newton 

diagram. 

(2) A set A~,~,~o of singularity types is called admissible if there exists a 

section ~g E H~ gl~)' called admissible section, satisfying 

�9 ~ = r~.x(~o ) t~ ~E is a section of glYo (denote by Co the curve defined by 
i), 

�9 Co M Sing(E) = O, 

�9 Co M E i N E and Co M EJ M E are reduced, 

�9 C o N E i N E J N E = O ,  

�9 Co N E has exactly P and ]Ax,~,~o I singular points of types A p X,s ~ 
�9 for the equisingular (equianalytic) ideal ZA~,~.~ ~ of Sing(Co N E),  

(3) HI(E,  ZA~x.~.~o |  = 0 .  

THEOREM 2.8: Assume that we are given a nat projective family of surfaces 

X --+ T over a smooth base T and an invertible sheaf s on X satisfying X1 

and X2. Consider a section ~o E H~163 and its zero set Co = [JCio 
satisfy/ng S1,$2,$4,$5 and assume that, for any i r j ,p  E Co M E i M EJ, 

either Co M E i M E j is reduced at p, or Cio and C j have semiquasihomogeneous 

singularities at p. As before we denote the singularity types of singular 

points of Co in Xo - Uavt~(E ~ M E ~) by S~. The singular points of Co in 
E i M Z j which are not ordinary nodes we denote Pija E E i n E j �9 Consider the 

equisingular/equianalytic ideal Z ~ / ~  of the "internal" singular points of Co 
(see Notation 2.1), and, for any boundary singular point Pija, define the 

sheaves f l i ,p~ and JJ'P~J~ as in Det~nition 2.7. Assume that 

(4) Hl (Xo, ~.(Ji 'mJ~ | ~JJ'P'J~" ) ~ zes/ea ~ ~-~o) ~- 0. 

o4j~z 

APiJ~ of singularity types, there Then, for any collection of admissible sets "'x,s 

exists an open neighborhood U~ = U~(O) C T and a family of sections Ct E 
l ,~ i l  l<i<k H ~ (Xt, s t E U~, having L~.j j l~_j-~ n(i) ['j Ax,z,~o as its only singularities, where 

"'X,s 

/)root"." As before we start with an appropriate base change and get family X -+ 

S. Then we blow up this family along the zero-dimensional scheme concentrated 

at U p~ja, and given by sheaf of ideals Z with stalks ~p~j,, defined similarly to 

(2). We denote the new family by Y -+ S. 
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Next we define the new family of line bundles by $ = 7C~xs | ~r~.xZ. Now, 

given any collection of admissible singularity types Ax,t,~o, by the definition we 

can construct a section ~ of 80, such that  Z ( 0  has IS  i~l<i-<k t jJl<_j<_n(i) UAx,s as  its 
only singularity outside of the intersection curves of several components of Y0. 

Moreover, Z ( 0  intersects transversally any of these curves. 

It is clear that  the triple (Y, s 4) satisfies conditions X1, X2, S1 - $5. So, if 

condition (1) is also satisfied, then we can use Theorem 2.2 to derive the result. 

It remains to prove that  

(5)  H I ( y o , Z {  s/ea | Go) : O. 

Consider the exact sequence 

@ H I ( E , Z ~  s/ea | OE(Co n E - E n  ( ~  u ~J))) -+ 
Is 

E 

+ Hi(ro,I  s/e~ | + H l  ( Xo, ~fl es/ea 

The first group is zero by the definition of the admissible singularity classes. 

The last group is zero, since 

~,j,i 

Hence (5) is satisfied, and we are done. | 

To illustrate the theorem we consider the following example: 

Example 2.9: Let A C ~2 be a convex non-degenerate lattice polygon, Tor(A) 

the toric surface associated with A. The monomials xiy j, (i,j) E A A Z 2, 

generate a very ample linear system A(A) = [s on Tor(A). We claim 

that  there is a rational nodal curve C C A(A), which, for any edge a C A, 

meets Tor(a) at a unique point, and, furthermore, C is non-singular at all these 

points. In other words, C crosses any Tor(a), a C 0A, at one non-singular 

point with multiplicity equal to ]a], the lattice length of the edge a. Moreover, 

for any two fixed distinct edges al ,  a2 C 0A and any two fixed generic points 

zl E Tot(a1), z2 E Tot(a2), we can find C as above passing through Zl, z~ and 

the family of such curves has expected dimension. 

It is not difficult to show that  such a rational curve does exist, however it is 

not evident that  one can find a nodal rational curve. For example, a relatively 

simple case of a triangular A requires some computation (see [20], Lemma 3.5). 

Our patchworking theorem allows one to extend the required statement from 
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the case of a triangle to an arbitrary lattice polygon A. Namely, we prove the 

statement by induction on the number of vertices in A. 

The base of induction is the case of a triangle, and it is done in [20], Lemma 

3.5. To perform the induction step, we start with A which is not a triangle. 

Let vo ,v l , . . .  ,v~+~, n _> 2, be the vertices of A. We divide A by the diagonal 

(Vo, v2) into a union 

A1 U A2 = conv{vo,v,,v2} U conv{v2,.. .  ,vn+,,vo}, 

and work in the setting of Example 2.2 [21]. We will assume that  zi �9 Tor(0Ai). 

For i = 1, 2, we take a rational nodal curve C~ �9 A(Ai), which meets any 

divisor Tot(a), a C 0Ai, at a non-singular point with multiplicity [a I. Such 

curves do exist by the induction assumption, and moreover, they can be chosen 

so that,  for the common edge a = A 1 N A2 ,  it holds that  C 1 N Tor(a) = 

C~ n Tor(a) = {z} is a generic point on Tor(a). Hence, we have constructed 

a patchworking pattern, which satisfies the required conditions with the only 

exception being condition $3. 

By [20], Lemma 5.5 (i), the set of l a [ -  1 nodes is admissible on Tor(E), 

where E is the triangle with vertices (0, 1), (0, -1) ,  ([al,0). So, if condition (4) 

is satisfied for the presented patchworking pattern, then we can apply Theorem 

2.8 to derive the existence of an irreducible reduced curve Ct �9 A(A) having 

[ Int(A) FI Z2[ nodes as its only singularities. Since the arithmetic genus of any 

curve in A(A) is [ Int(A) A Z2[, the resulting curve is rational. To preserve the 

tangency conditions to the divisors at infinity, we should modify condition (4) 

in a sense of Remark 3.2 (2) [21]. Namely, instead of the ideal 

z = ~ (ff~'"~~ | ffJ'P'J~ | z ~ / ~  
c~ , j  # 

we consider Z | J ,  where O~To,,(~) is the ideal concentrated at the intersection 

points of C~ with the lines L, corresponding to the common edges of Ai and A, 

where it is locally given by {f  E Oz[(f" L)~ >_ (C~. L)z - 1} if z r zl,z2, and 

{ f  �9 O z l ( f ' L ) z  >_ (C~.L)z  - 1} if z -  Zl or z = z2. 

So, it remains to check modified condition (4). Denote 9 r = Z | 1 7 4 1 6 3  ~'1 = 

5rITo,l~l), ~2 = ~lTor(a21' 5r12 = ~lTort~mA21 and consider the exact sequence 

0 ~ .7" -+ .Yl C, .7"2 ~5"12 -+0.  

Due to the induction assumption, H 1 (Tor(Ai), .~) = 0, hence, in order to check 

modified condition (4), i.e. to prove H 1 (U Tor(Ai), ~-) = 0, it is sufficient to show 
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that  the map 

(6) H~ Jr1) G H~ ~-2) --+ U~ 71Tor(A2) , ~'12) 

is surjective. But the map H~ -+ H~ Tor(A2),$'12) 

is surjective (one can easily derive this from the Riemann-Roch Theorem), 

therefore (6) holds, and we are done. 

3. D e f o r m a t i o n  of  curves  w i t h  mu l t i p l e  c o m p o n e n t s  

Assume that  we are given a plane curve C C IP 2 of the form C = C1 + kC2, k > 1, 

where C1 and C2 are smooth curves of degrees dl, (/2, intersecting transversally. 

One would like to describe the deformation space of the singularity of C. This 

space is too big, but one can describe some natural small subspace of it. Namely, 

consider F 2 • ~1 and define X to be the blow up of IP 2 • ]~1 along C2 x 0 C IP 2 x IP 1. 

Then X admits natural projections 7~: X -~ IP 1 and a: X -+ IP 2. If t ~ 0 then 

~r-l(t) = IP 2 and if t = 0 then 7r-l(0) = Po 2 U E, where the exceptional divisor 

E = ]Proj(Och �9 Oc2 (C2)) is a ruled surface over C2. 

Now we consider the family/ :  = a*Op2(dl + kd2)| O x ( - k E )  of line bundles 

on X. Thus 

�9 ~lx~ = O~,~(di + kd2) for t # 0, 

�9 s = Op2(d~), 

�9 s = OE(kC2 + (did2 + kd~)F) where F is the class of the fiber in E. 

Let ~ E H~ s be a section, and let C = Ca U C2 C ?~ U E denote the 

curve defined by the section ~. Assume that  C1 = C1. Assume also that  C2 has 

only isolated singularities of some types S1 , . . . ,  S~. We denote the equisingular 

(equianalytic) ideal of ~ $i C Xo by I~ s/ea. 

THEOREM 3.1: Assume that 

(7) HI( E, (I0 ~/ea | ~)1~) = O. 

Then there exists a deformation Ct C ~2 of Co = C and, for any t # O, the curve 

Ct has exactly r singular points of types $ 1 , . . . ,  S~ as its only singularities. 

Proof: This theorem is an easy consequence of the geometric patchworking. 

First of all we have to show that  

(8) H I (Xo, ICs/ea | ~) = O. 

Consider the exact sequence 

o O :(dl - | (i +o | o. 
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Hl(]~2,0~,~(dl -d2)) = 0, thus (7) implies (8). Now one can apply Theorem 

2.2 to derive the result. | 

4. Ex i s t ence  of  curves  w i th  p r e sc r ibed  s ingula r i t i es  on  a lgebra ic  

sur faces  

In this section we consider the problem of the existence of curves with prescribed 

singularities on algebraic surfaces. Namely, let Z be a smooth projective alge- 

braic surface, s E Pic(E), and let ~ql , . . . ,Sr  be singularity types. Consider 

the variety VIs I (81 , . . . ,  St) parameterizing curves C E IL:I having exactly r sin- 

gular points of types $ 1 , . . . ,  Sr as its only singularities. We ask the following 

questions: 

�9 Is ~ t  (S~,... ,  s~) # 07 
�9 Does Vl~l($1,... ,St) contain a regular component, i.e. a component of 

expected dimension? 

A complete answer (i.e. a necessary and sufficient numerical condition on L; 

and singularity types) to these questions is known only for nodal curves on very 

specific surfaces. However, a sufficient condition to this problem was proposed 

in [7, 19] in the plane case, and in [12] for general surfaces. The goal of this sec- 

tion is to significantly improve the numericM conditions and to get rid of some 

non-numerical condition given in [12], which are hard to verify. Our method is 

based on the patchworking procedure developed in [21]. Namely, first we prove 

the result for geometrically ruled surfaces. Then we degenerate the surface E 

into a union of E and some geometrically ruled surface, and use geometric patch- 

working to derive the general result. In fact this method is closely related to 

the deformations of curves with multiple components, presented in the previous 

section. Namely, the resulting singular curve is obtained as a deformation of a 

curve with multiple components in E, and the patchworking procedure allows 

us to describe this deformation. 

4.1 GEOMETRICALLY RULED SURFACES. Let L be a smooth, connected, pro- 

jective curve of genus gL, and let D E Div(L) be a positive divisor. Consider 

the geometrically ruled surface 

~L,D: 2L,D ---- Proj(OL �9 OL(D)) --+ L. 

It is well known that  7FL, D admits a unique section whose image has a negative 

self-intersection. We identify the image of this section with L. It is also known 

that  dim NS(~L,D) ---- 2; moreover, NS(~L,D) is generated by the class of a 
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fiber F = 7rL)D(Pt ) and the class of L, and any effective divisor M E DiV(EL,D) 

is numerically equivalent to a combination of F and L with non-negative coef- 

ficients. It is important to mention that the intersection form is given by the 

equalities L 2 = -deg (D) ,  F2=O, and L .F  = 1. 

THEOREM 4.1: Let 81, . .  . ,S~ be singularity types, let a and b be positive inte- 

g'ers, and let M E Div(~,,L,D) be any divisor numerically equivalent to aL + bF. 

Define mi = s(Si) + 1. Without  loss of  generality, ml  >_ m.2 >_ . . .  >_ m~. 

Assume that 

(9) b - 2gL + 1 + deg(D) >_ (a + 2)deg(D) > (m, + 1)deg(D), 

( ) deg(D) + 1 Z ( m i  1).2 
(10) ( U  - t (~L,  D)'2 >_ deg(D) 2ml + 3 + + , 

i=1  
r 

deg(D) + 1 ~-~(mi + 1) 2, 
(11) ( M -  K~L, D - F).2 > deg(D) i=1 

deg(D) + 1 " 
(12) (M - I(~.L. D - L) 2 >_ deg(D) Z ( m ' z  + 1)2" 

i=1  

Then, for almost every section a E H~ L, OL ( M)  ), there exists an irreducible 

algebraic curve C E [O~..D (M)  I such that 

(i) C has exactly r singular points of types Sj ,  . . . , ,.q~ as its only singularities, 

(ii) C A L is given by a (in particular C intersects L transversally), 

(iii) the equisingular/equianalytic stratum of C is smooth at C and has the 

expected dimension. 

Remark 4.2: (1) Compared to the previously known existence results, cf. [12], 

we mention that the statement above improves significantly tile leading coeffi- 

cient, namely in [12] the leading coefficient was 2, which is usually much weaker 

than (deg(D) + 1)/deg(D),  while the optimal coefficient is one. 

(2) It is well known that K ~ , . ,  =hum - 2 L  + (2gL - 2 - deg(D))F.  Hence 

the conditions (10), (11), (12) can be reformulated as 

d e g ( D ) + l (  r ) 
(a + 2)(2b - 4gL + 4 -- a" deg(D)) >_ deg(D) 2ml + 3 + ~--~(mi + 1).2 , 

i = l  

r 

deg(D) + 1 ~ ( m i  + 1).2, 
(a + 2)(2b - 4.qL + 2 -- a . deg(D) ) >_ deg(D) i=l 

deg(D) + 1 ~ 
(a + 1)(2b - 49L + 4 -- a.  deg(D) + deg(D)) > deg(D) ~(mi= + 1) ~. 
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The following lemmas will be useflfi: 

LEMMA 4.3: Let n l , . . . , nr E N, and R E DiV( E L,D ) be a divisor satisfying the 

following three conditions: 

deg(D) + 1 r 
(13) (R - I(~L.D) 2 _> deg(D) ~--~(ni + 1) 2, 

(14) ( R -  K ~ L . , ) . F  > max{n~[i = 1, . . .  ,r}, 

(15) R - K~:L, o is net'. 

Then for z l , .  �9 zr E ~ in general position and v > 0 

( •  H ~L,D,lr R -  niEi = O, 
i=1 

where ~L,D denotes the blow up Of~L,D at { Z l , . . . , z r } ,  7r: ~L,D ~ ~L,D is 

the natural projection, and Ei = ~r -1 (zi). 

Remark 4.4: (1) In principle, by imposing linear restrictions on R and n l , . . . ,  nr 

(similar to (14)), it is possible to decrease the coefficient (deg(D) + 1)/deg(D).  

(2) Fix N E N and e > 0. Then Lemma 4.3 implies the following asymptotical 

statement: For any d >> 0 and for any set of multiplicities ml  <_ . . .  <_ mr < N 

satisfying 
r 

d 2 + O(d) >_ (1 + e) ~-'~(mi + 1) 2, 
i--~l 

the following hi-vanishing holds: 

H 1 (I? 2, 2/(4)) = 0, 

where Z is the sheaf of ideals of the zero-dimensional scheme of generic fat points 
U \I m, 

Z i �9 

LEMMA 4.5: Using the notation of Theorem 4.1, let z l , .  .. , z~ E ZL,D be points 

in general position. Assume that (9), (10), (11) hold. Then, for almost every 

section ~ e H~ OL(M)) ,  tlmre exists a curve C e IOEL.o(M)I with the 

following properties: 

(i) C has an ordinary multiple point of nmltiplicity mi = s(Si) + 1 at z~ for 

any i = 1 , . . . ,  r, and no other singularities; 

(ii) for any i = 1 , . . .  ,r  the tangent directions of C at zi are generic; 
(iii) the curve C is commctcd; 
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(iv) C A L is given by the section ~. 

We postpone the proofs of the lemmas, and show first how to derive the 

theorem. 

Proof of Theorem 4.1: We apply tl~e patchworking procedure (Theorem 2.2) to 

a patchworking pattern very similar to the one presented in Example 2.1 [21]. 

Let us first construct the patchworking pattern. 

Let z l , . . . , z r  E ~L,D be points in general position. Define a flat family of 

surfaces 7r: X = BlzlxO ..... z,.xO(~L,D X ]p1) -4 ]p1 to be the blow up of ~L,D X ~1 

at zl x 0 , . . . ,  zr x 0. The variety X admits a natural projection a: X -4 EL,D. 

Consider a family of line bundles on Xt = 7r -l(t) given by the line bundle 

s = a*(O~L,D(M))| ~i~=1 (9x(-miEi) ,  where E i denotes the exceptional 

divisor corresponding to zi x 0. It is easy to see that the generic fiber of our 

family is isomorphic to  ~L,D equipped with the line bundle O~L.D(M), and 

the central fiber of our family is isomorphic to  ~L,D U UiL1 El, where ~L,D is 

the blow up of EL,D at z l , . . .  ,zr. The central fiber is equipped with the line 

bundle, whose restriction to E ~ is (gE~ (mi) and whose restriction to ~L,D is the 

pullback of (gzL, D (M) twisted by O~L D (-miEn) for i = 1 , . . . ,  r, where E~ is 

the exceptional divisor corresponding to zi. 
The last ingredient of the patchworking pattern is the section ~0 C H ~ (X0, s 

First, due to Lemma 4.5, there exists a curve in 1(.9EL.D (M)I having an ordinary 

multiple point of multiplicity mi at zi for i --- 1 , . . . ,  r, and no other singularities. 

Its pre-image in  ~L,D is denoted by C ~ By Lemma 4.5, we can assume that 

for any i, C ~ r3 E i is a generic set of mi points on the l ine ~L,D n E i. Next, 

by Lemma 4.6 [21], we can choose good representatives C~ E 1(gE, (m~)l of the 

singularity types $i, i = 1 , . . .  ,r ,  such that C~ N ~'L,D : C 0 A E i. Hence the 
r i curve Ui=0 c~ c Xo is given by some section ~o E H~163 Moreover, 

if Ic~ C (rOE i denotes the equisingular/equianalytic ideal sheaf of the singular 

point of C~ then Hl(Ei,Ict~(mi - 1)) = 0, since mi = s(Si) + 1 and the set of 

points C~ N ~L,D ~- C 0 A E i is generic in ~'L,D (7 E i. 

Next we show that H I ( X 0 , Z  | s = 0, where Z C OXo denotes the equi- 

singular/equianalytic ideal sheaf of the singular points of Co. This follows from 

Lemma 4.3, due to Theorem 3.1 [21]. Now we can apply the weak patchworking 

theorem (Theorem 2.2) to derive the existence result. Namely, there exists a 

deformation Ct E Is t belonging to a small neighborhood of 0, such that Ct 
has exactly r singular points of types S t , . . . ,  Sr as its only singularities. If I t  

denotes the equisingular/equianalytic ideal of the singular points of Ct, then 

H 1 (Xt, It | s = 0, by the semi-continuity of the cohomology. Hence the germ 
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of the equisingular/equianalytic strata of Ct is smooth and has the expected 

dimension for small t. 

To prove the irreducibility of the constructed curves we just mention that ,  

due to Lemma 4.5, the curve Co is connected. Moreover, any two components 

of Co intersect transversally, and these intersection points get smoothed under 

the deformation. Hence the resulting curve Ct is irreducible. 

Due to Lemma 4.5, for almost every section ~ E H~ (gL(M)), we can 

choose Co in such a way that  Co M L is given by ~. Ct M L is a small deformation 

of Co M L, hence, for ahnost every section a E H~ OL(M)) ,  the zero set Z(a)  

is obtained as Ct M L, for an appropriate choice of t and Co. | 

Proof of Lemma 4.3: By the Kawamata-Viehweg vanishing theorem it suffices 

to show that  A = (Tc*R - ~i~=1 niEi) - K~L,D is big and nef, i.e. we have to 

show:  

(a) A 2 > 0 , a n d  

(b) A.B ~ >_ 0 for any irreducible curve B' i n  ~n,D. 

Note that  A = 7r*(R - Kr, L,u) - ~ = l ( n i  + 1)Ei, and thus by hypothesis (13) 

we have 
r 

A 2 = ( R -  I(~,~,)  2 - ~-'~(ni + 1) 2 > 0, 
i = l  

which gives condition (a). 

For condition (b) we observe that an irreducible curve B t on ~, is either the 

strict transform of an irreducible curve B in G or one of the exceptional curves 

Ei. In the latter case we have 

A.B'  = A.Ei = ni + 1 > O. 

We may therefore assume that  B r = / ~  is the strict transform of an irreducible 

curve B on Z having multiplicity multz~(B) = ki at zi, i = 1, . . .  ,r .  Then 

r 

A.B'  = (R - I(~L.~).B - ~ , ( n i  + 1)ki, 
i = 1  

and thus condition (b) is equivalent to (b'): (R - K~L,D).B > ~ir=l(ni + 1)k~. 

CLAIM 4.6: Let B C G be an irreducible curve passing through z l , . . . , z r  

(points in general position) with multiplicities k l , . . . ,  kr. Then 

B 2 > ~ k~ - min{kilki ~ 0}. 
i = l  
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For the proof of the claim we refer to [12] Lemma 2.2. Now, using Claim 4.6, 

the Hodge index theorem, hypothesis (13), and the Cauchy-Schwarz inequality 

we get the following sequence of inequalities: 

( (R -K~ ,D) .B )  2 > (R - KEL,D) 2 " B 2 

) (deg(D) + 1 E ( n ,  + 1) 2 . B2 

deg(D)+l(E ) (r ) 
-> de (n) + 1) 2 - - k,o 

-- i~--i i-----I 
T ~ ?" r 

= E ( n i  + 1)2. k 2 + )--~=1 (ni + 1) 2" (~'~i=1 k2 - (deg(D) + 1)kio) 
i=1 i=1 deg(D) 

.( ~ .2_ (deg(D) +l)kio) 
:> E(n .~  + 1)ki + deg(D) ' 

i==l 

where io �9 {1, . . .  ,r} is such that kio = min{k~lki ~ 0}. Since R -  KZ~.,D is nef, 

condition (b ~) is satisfied as soon as we have 

(16) ~ k 2 >__ (deg(D) + 1)ki0, 
i = 1  

which leaves us with the cases when #{ilki ~ 0} < deg(D). Moreover, we can 
assume that B ~ L since _z are in general position. B ~t L is irreducible, hence 

(17) B.L > O. 

If B = F,  then (16) is satisfied and we are done. So we can also assume that 

(18) B.F >__ max{k~}. 

As we mentioned before R-KzL .o  =hum aL+bF, where a = (R-K~L,D).F > 
max{n~[i = 1 , . . .  ,r} due to (14), and b+an 2 = (R-Ky,  L D).L > 0 which implies 

(19) b >_ - a L  2 = a. deg(D) >_ deg(D), max{ni + l }. 

Thus, due to (17), (18), (19) 

(R-K~L,D).B = aL.B+bF.B > deg(D).max{ni+ l}-max{k/} _> ~ ki(ni+ l), 
i-=--1 

since #{ilk~ ~ 0} _< deg(D). So condition (b') is satisfied, and we are done. 
| 
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Proof of Lemma 4.5: Let Zo E ~aL,D be any point different from z l , . . . ,  z~, and 

let mo = 0. Define sheaves of ideals J~, i = 0 , . . .  ,r ,  by 

{ m m~+l if z = zi, 

(~i)z ~- mj if z = zj; j  Tt i, 
OEL.D,Z~, otherwise. 

Then define `7 = ~ i ~ o  3 .  By Lemma 4.3, 

HI(EL,D,J  | OEL,D(M)) = HI(EL,D,Ji | Or~L,.(M)) = 0 

for all i > 0. To show that  Hi(EL,D, `7o |  (M)) = 0 we consider the exact 

sequence 

0 -+ ,.7 | OZL.D(M -- Fo) --+ ̀ 7.70 | OZL,D(M) ~ (,70 | OEL,, (M))I~ o -~ 0, 

where Fo is the fiber of 7rL,D: EL,D --+ L passing through the point z0. Since 

the points z l , . . . ,  z~ are in general position, at most one of these points belongs 

to Fo. Now we consider the long exact sequence, 

HI(EL,D,`TQO(M-Fo))  --+ HI(EL,o,`7o| --+ HI(Fo, (floQO(M))iFo). 

The first group is zero by Lemma 4.3, and the last group is zero by the Riemann-  

Roch theorem, since M.Fo >_ max{mi[1 < i < r}. Hence 

HI(~L,D,`70 | OEL,D(M)) = O. 

Consider the exact sequences 

~mi /~m~+l  0 --+ `7i | 0~,~, (M) --+ ,7 | O~.L.D (M) --+ ,,~, / , %  --+ 0 

and corresponding exact sequences of cohomology 

mi/_.ra,+l HI(ZL,D,Ji  | OEL.D(M)) ---- O. HO(EL,D, f l  | OZL,D (m)) --+ m~, ,"~z, --+ 

It follows now that  the generic curve in ]`7 | Oz L,D (M)I has an ordinary multiple 

point at zi, i = 1 , . . .  , r ,  of multiplicity mi with generic tangent directions at 

each point. It follows also that  the base locus of 1,7 | Ozr ,v  (M)I is { z l , . . . ,  z~ }, 

and hence the generic curve in this system has exactly r singular points. 

Next, we have to show that  the curve C is connected. We proved that  the base 

locus of ]fl | Ozr, v (M)] is finite, and thus the generic element G in this system 

does not contain L as a component. Since mi >_ 2 for all i = 1 , . . .  , r ,  G contains 

at least one component G1 numerically nonequivalent to kF. Then F.G1 > 0 
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and L.G1 >_ O. Now, if G2 is any other component of G, then G~ -~num aL + bF 
for some a _> 0 and b > 0. Hence G1.G2 > 0, which implies that  G is connected. 

Last, we have to show that  we can choose C in such a way that  C N L  is given 

by a. Consider the exact sequence of sheaves 

0 --+ f l  | Op,~,. (M - L) + ,.7 | O~L," (M) --+ OL(M) -~ 0 

and the corresponding long exact sequence of cohomology 

HO(F,L,D, ,.7 | Or, L, D (M)) -+ H~ OL (M)) --+ H 1 (EL,D, :7 | OP,~,o (M - E)). 

The last group is zero due to Lemma 4.3, and we are done. | 

4.2 GENERAL CASE. Let E be a smooth projective algebraic surface, and let 

L 1 , . . . , L k  C E be smooth curves, such that  for any 1 < i < k and for any 

smooth curve C C E, the sheaf O~(Li) is ample and there exists a curve L~ E 

I0~ (Li)l intersecting C transversally. In this section we will give a sufficient 

condition for the existence of curves with prescribed singularities in the linear 
a 

systems $ ( ~ i=1  niLi), where $ is a fixed line bundle on E. The idea is to 

reduce this problem to the case of ruled surfaces by degenerating E to the union 

E t2 ELi,OL~ (L~), and applying geometric patchworking. 

To formulate the theorem we will need the following 

Notation 4.7: gj, as usual, denotes the genus of the curve Lj.  We define 
k 

a N = nj, and bj = deg(s 1 n i L i -  ~ i = j + l  Li)ILj ). 

~-r il'-<i-<r(j) s(S~). THEOREM 4.8: Let e-'jJl<j<_a be singularity types. Detlne mji = 

Without loss of generality we can ass~lme that rnjl >_ mji for a11 i , j .  Assume 
k that  there exists a smooth curve in I$(-  ~i=1 L/)I, and for any 1 < j < k the 

following conditions axe satistied: 

L~ + 1 ['2m r(j) ) ( a j + 2 ) ( 2 b j - 4 g j + 4 - a j L 2 ) >  Lj i v +3+~--~(mj~+l) '  - - - - 7 K -  j l  
i----1 

(aj + 2)(2bj - 4gj + 2 - ajL~) > L~ + 1 r(j) - 1)=' 
i----1 

(aj+ 1)(2bj -ngj  + 4 - a j L ~  + L~) > L~ + 1 r(a) - L 2 E ( m J  i + 1) 2, 
/=1  

- % + 1 + > (aj + 2)L  > (m,1 + 1)L . 
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k k Then, there exists a curve C �9 Is niLi)l having exactly ~i=1 r(i) singular 
l'qi~l<i<r(J) asits~ ularities" M~176 Hl~ , c ~ JJ points of types t'-'j J l~_j-~k (E I es/ea (C ~ ~ 

= O, and if k > 0 then C is irreducible. 

The following claim will be useful: 

CLAIM 4.9: Let C be a curve having exactly r singular points of types $1, . . . ,  Sr 

as its only singularities, and let C' be a smooth curve intersecting C transver- 

sally. Assume that HI(E,I~/ea(C)) = HI(C',Oc,(C + C')) = O. Then, for 
generic section c~ �9 H~ ', Oc, (C + C') ), there exists a curve C �9 IOr.(C + C')[ 

having exactly r singular points of types $1 , . . . ,  Sr as its only singularities, and 

E ~ / ~  whose intersection with C' is given by a. Moreover, Hi(  , I c ( C) ) = O. 

Proof: The proof of the claim is easy; hence we present only a sketch of it and 

leave the details to the reader. 

Consider the curve Co = C U C'. It has r + C.C' singular points. We should 

mention that  the equisingular/equianalytic s tratum has the expected dimension 

at Co due to the given hi-vanishing conditions. Hence by a small deformation 

of Co we can obtain a curve C E 1(9(C + C')] having exactly r singular points of 
types S 1 , . . . , S r  as its only singularities. Moreover, H i (E ,  Iegs/ea(c)) = 0 due 

to the semicontinuity of the cohomology. Consider the exact sequence 

ies/ea es/ea H~ ~ (C + C')) -+ H~ ', Oc, (C + C')) -+ H I(E, I 0 (C)) = O. 

It follows now that  one can choose C in such a way that  the intersection C n C' 

is given by a generic section c~. | 

Proof of Theorem 4.8: The proof is by induction on k. If k = 0 then there is 

nothing to prove. Assume that  the result holds for k = ko >_ 0, and let us prove 

it for k = k0 + 1. 

First we construct the patchworking pattern. Let X be the blow up of E x l? 1 

along Lk x 0, and let 7r: X --+ l? 1 and a: X --+ E be the natural projections. 

It is clear that  Xo = E U E, where E = EL~,OLk(Lk) is the exceptional divisor. 

Define line bundle s to be 

k 

It is easy to see that  s = s V'k-lz-.,i=l niLe) and f-qE =-hum nkL + mF,  where 

(following the notation of the previous section) F is the homological type of 
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the fiber in E, L is the unique irreducible curve in E having negative self- 

intersection, and m = deg(g(Y'~= 1 niLi)lL~). 

By the induction assumption there exists a curve C E [s  + ~-~ik=-i 1 niLi)l 
I~J 1.1 <j<_r(i) having exactly }-'~ik-11 r(i) singular points of types t i ,l<i_<a-1 as its only sin- 

gularities. Moreover, H 1 es/ea (E, I~ (C)) = 0. Thus, due to Claim 4.9, we can 

construct a curve C1 e [s niLi)[ having exactly ~ik--~ r(i) singular points 
l ~TJl l <j<r(i) of types t~i Jl~i~.k_l as its only singularities, and whose intersection with Lk 

is given by a generic section a e H~ s niLe)). Moreover, 

(20) Hire I es/e~ ~-~niLi) 

Applying Theorem 4.1, we can construct a curve C2 E [s having exactly 

r(k) singular points of types S~., . . . ,  Sk (a) as its only singularities, and satisfying 
H 1 (E I es/ea , c~ | s = 0. Moreover, we can assume that C1 U C2 is given by a 

section of s 

Now we use Theorem 3.1 [21] and tile weak patchworking theorem (Theorem 

2.2) to finish tile proof. | 
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